
Chapter 2

Introduction

A common situation in applied sciences is that one has an independent variable
or outcomeY and one or more dependent variable or covariatesX1, . . . , Xp. One
usually observes these variables for various “subjects”.

Note: We use upper case to denote random variable. To denote actual numbers
we use lower case. One way to think about it:Y has not happened yet, and when
it does we seeY = y.

One may be interested in various things: What effects do the covariates have
on the outcome? How well can we describe these effects? Can we predict the
outcome using the covariates?, etc..
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2.1 Linear Regression

Linear regression is the most common approach for describing the relation be-
tween predictors (or covariates) and outcome. Here we will see how regression
relates to prediction.

Let’s start with a simple example. Lets say we have a random sample of US males
and we record their heights (X) and weights (Y ).

Say we pick a random subject. How would you predict their weight?

What if I told you their height? Would your strategy for predicting change?

We can show mathematically that for a particular definition of “best”, described
below, the average is the best predictor of a value picked from that population.
However, if we have information about a related variable then the conditional
average is best.

One can think of the conditional average as the average weights for all men of a
particular height.

In the case of weight and height, the data actually look bivariate normal (football
shaped) and one can show that the best predictor (the conditional average) of
weight given height is

E[Y |X = x] = µY + ρ
σY

σX

(x − µX) (2.1)

with µX = E[X] (average height),µY = E[Y ] (average weight), and whereρ is
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Figure 2.1: Weight versus height.
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Figure 2.2: Weight versus height. 73 inch men highlighted.
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the correlation coefficient of height and weight.

If we obtain a random sample of the data then each of the above parameters is
substituted by the sample estimates and we get a familiar expression:

Ŷ (x) = X̄ + r
SDY

SDX

(x − X̄).

Technical note: Because in practice it is useful to describe distributions of popula-
tions with continuous distribution we will start using the wordexpectationor the
phraseexpected valueinstead of average. We use the notation E[·]. If you think of
integrals as sums then you can think of expectations as averages.

Notice that equation (2.1) can be written in this, more familiar, notation:

E[Y |X = x] = β0 + β1x

Because the conditional distribution ofY givenX is normal we can write the even
more familiar version:

Y = β0 + β1X + ε

with ε a mean0 normally distributed random variable that is independent ofX.
This notation is popular in many fields becauseβ1 has a nice interpretation and its
typical (least squares) estimate has nice properties.

When more than one predictor exists it is quite common to extend this linear
regression model to the multiple linear regression model:

Y = β0 + β1X1 + . . . + βpXp + εi
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Figure 2.3: Regression line.
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with theεis unbiased (0 mean) errors independent of theXj as before.

A drawback of these models is that they are quite restrictive. Linearity and ad-
ditivity are two very strong assumptions. This may have practical consequences.
For example, by assuming linearity one may never notice that a covariate has an
effect that increases and then decreases. We will see various example of this in
class.

Linear regression is popular mainly because of the interpret-ability of the param-
eters. However, the interpretation only makes sense if the model is an appropriate
approximation of the natural data generating process. It is likely that the linear re-
gression model from a randomly selected publication will do a terrible job at pre-
dicting results in data where the model was not trained on. Prediction is not really
given much importance in many scientific fields, e.g. Economics, Epidemiology,
and Social Sciences. In others fields, e.g. Surveillance and Finance, prediction
is everything. Notice that in the fields where prediction is important regression is
not as popular.

2.2 Prediction

Methods for prediction can be divided into two general groups: continuous out-
come and discrete outcomes.

When the data is discrete we will refer to it asclassification. Other terms are
discriminant analysis, machine learning, supervised learning.
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When the data is continuous we will refer to it asregression. Other terms are
smoothingandcurve estimation.

These seem very different but they have some in common. In this class we will talk
about the commonalities but in general we will discuss these two cases separately.

The main common characteristic in both cases we observe predictorsX1, . . . , Xp

and we want to predict the outcomeY .

Note: I will useX to denote the vector of all predictors. SoXi are the predictors
for thei-th subject and can include age, gender, ethnicity, etc...

Note: Given a prediction method we will usef(x) to denote the prediction we
would get if the predictors areX = x.

Q: What are examples of prediction problems?

So, what does it mean to predict well? Let’s look at the continuous data case first.

If I have a predictionf(X) based on the predictorsX how do I define a “good pre-
diction” mathematically. A common way of defining closeness is with Euclidean
distance:

L{Y, f(X)} = {Y − f(X)}2. (2.2)

We sometime call this theloss function.

Notice that because bothY andf(X) are random variables so is (2.2). Minimizing
a random variable is meaningless because its not a number. A common thing to
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do is minimize the average loss or theexpected prediction error:

EXEY |X [{Y − f(X)}2|X]

For a givenx the expected loss is minimized by the conditional expectation:

f(x) = E[Y |X = x]

so it all comes down to getting a good estimate of E[Y |X = x]. We usually call
f(x) theregression function.

Note: For discrete problems we usually want a plausible prediction. Notef(x) is
typically a continous number and not a class. We can take an extra step and define
a prediction rule. For example for binary outcome we can say: iff(x) > 0.5 I
predict a 1, otherwise predict 0. However, it is useful to change the loss function.
More on this later.

Notice that if the linear regression model holds then

f(X) = E[Y |X1 = x1, . . . , Xp = xp] = β0 +

p∑
j=1

xjβj.

For Gaussian models the solution is the same as for least squares and MLE. How-
ever, many times it is hard to believe that the linear regression model holds. A
simple example comes from AIDS research. See Figure 2.4.

Technical note: It should be noted that for some designed experiments it does not
make sense to assume theX are random variables. In this case we usually as-
sume we have “design points”x1i, . . . , xpi, i = 1, . . . , n and non-IID observations
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Figure 2.4: CD4 Data
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Y1, . . . , Yn for each design point. In most cases, the theory for both these cases is
very similar if not the same. These are called therandom design modelandfixed
design modelrespectively.


